
International Journal of Electrical, Electronics ISSN No. (Online): 2277-2626
and Computer Engineering 3(2): 107-112(2014)

An Empirical View of Database Security Measurements

Mohd Ahtesham Farooqui and Mohd Furkan
Department of Computer Science,
Jazan University, Saudia Arabia,

(Corresponding author: Mohd Ahtesham Farooqui)
(Received 05 August, 2014 Accepted 11 October, 2014)

ABSTRACT: A database is a collection of data normally describing the activities of one or more
organization. In now-a-days database security at various level of designing database is the main
issue. It protects recorded data from threats, unauthorized use, data loss, hackers, deletion,
replication, false server and unauthorized modification. If the database is complex then more
complex the security measures that is to be controlled. Data is more insecure and vulnerable on
network and centralized distribution. The possibility of loss of data becomes increase if security
measurement is not used at various level of designing and use of data. The paper discusses
security of data at various level of its use.

Keywords: Database, Database security, Security level, control, attack, network, unauthorized.

I. INTRODUCTION

A database management system (DBMS)
manages large amount of information which is
important for any organizations. The primary
goal of DBMS is to provide a way to store and
retrieve database information that is both
convenient and efficient. Any unauthorized
access or manipulation of the database means
trouble for the organization. Thus database
should be protected from the persons who are not
authorized to access either certain parts of the
database or the whole database. In other words
protecting database against unauthorized access
or manipulation is a major concern. In section 2
represents the objective of the study, control
measurements (access control, inference control
and flow control of database), data encryption
and conclusion is given in section 3, 4, and 5.

II. OBJECTIVES OF THE STUDY

The objectives of the study are:

1. To study access control, inference control and
flow control of database.
2. Study the different approaches for access
control, inference control and flow control of
database with examples.
3. Contrast the transparent/external data
encryption user/data encryption.

III. CONTROL MEASUREMENTS

There are some main control measurements to
secure the data in databases. These are access
control, inference control and flow control of
database as shown in Fig.1.

Fig. 1. Control Measurements.

I

J E
E

CE

Control
Measurements

Access Control

Discretionary
Access Control

Mandatory
Access Control

Inference
Control Flow Control

Farooqui and Furkan 108

A. Access Control
It restricting the unauthorized access to the
database is the main issue in developing secure
DBMS. As discussed earlier it is the most
database users need only a small portion of
database to perform their job. Allowing them
access to the whole database is undesirable. Thus
an organization should develop effective security
policy to enable a group of users to access only a
required portion of the database. The security
policies of the organizations depend on the type
of data maintained by them. Hence they are
varying from organization to organization. In
further once the security policy is developed it
should be enforced to achieve the level of
security required.

a) The access control is not a standalone
component of a security system.

b) Access control coexists with other
security services.

c) Access control works closely with audit
control.

d) The access matrix is a good tool to
specify permissions.

e) The access control list (ACL) details are
placed in Access Matrix.

There are two main approaches in DBMS for
access control is discretionary access control and
mandatory access control.

(i) Discretionary access control (DAC). It is
enforced in a database system by granting and
revoking privileges to/from the users. Different
users have different access privileges on the
object of the database. The grant and revoke
commands of data manipulation language
corresponds to grant and revoke privileges,
respectively. The discretionary access control
(DAC) allows authorized users to change the
access control attributes of objects, thereby
specifying whether other users have access to the
object. A simple form of DAC might be file
passwords, where access to a file requires the
knowledge of a password created by the file
owner. In Linux operating system the file
permission is the general form of DAC. DAC is
the setting of permissions on files, folders, and
shared resources. The owner of the object
normally the user who created the object in most
operating system environments applies
discretionary access controls. This ownership
may be transferred or controlled by
root/administrator accounts. The DAC is
controlled by the owner or root/administrator of
the Operating System, rather than being hard
coded into the system. The DAC mechanisms
have a basic weakness, and that is they fail to
recognize a fundamental difference between
human users and computer programs

(ii) Mandatory access control. Mandatory
access control is a system-enforced method of
restricting access to objects based on the
sensitivity of the object and the clearance of the
user. By contrast, Discretionary Access Control
is enforced by individual file owners rather than
by the system.

B. Inference Control
Even in multilevel secure DBMS, it is possible

for users to draw inferences from the Information
they obtain from the database. The inference
could be derived purely from the data obtained
from the database system, or it could additionally
depend on some prior knowledge which was
obtained by users from outside the database
system. An inference presents a security breach if
more highly classified information can be
inferred from less classified information. There is
a significant difference between the inference
and covert channel problems. Inference is a
unilateral activity, in which an unclassified user
legitimately accesses Unclassified information
from which that user is able to deduce Secret
information. Covert channels, on the other hand,
require cooperation of a Secret Trojan Horse
which transmits information to an unclassified
user by indirect means of communication. The
inference problem will exist even in an ideal
system which is completely free of covert
channels. The word “inference” means “forming
a conclusion from premises”. Users of any
database can draw inferences from the
information they have obtained from the database
and prior additional information also called
supplementary knowledge they have. The
inference can lead to information disclosure if the
user is able to access to information they are not
authorized to read. This is the inference problem
in the database security. Inference problem
occurs when a user can deduce or infer
information from a collection of individual
accesses against a database summarized different
approaches to handle the inference problem:

a) Place restrictions on the set of allowable
queries that can be issued by a user.

b) Add noise to the data and
c) Augment a database with a logic-based

inference engine to modify queries
before the database processes them.

Security violations via inference occur when
users pose multiple queries and acquire
unauthorized information. A solution to handling
the inference problem in relational systems is to
augment a relational DBMS with logic based
inference engine and a knowledge base. The
inference engine will detect security violations
via inference when processing queries.

Farooqui and Furkan 109

Two approaches to implementing such an
inference controller are as follows: In the first
approach, the database as well as the security
constraints are expressed in a logic programming
language with support for representing and
manipulating objects. An example of such a
language is object-prolog.

C. Flow Control
The flow control regulates the distribution or
flow of information among accessible objects. A
flow between object A and object B occurs when
a program reads values from A and writes values
into B. Flow controls check that information
contained in some objects does not flow
explicitly or implicitly into less protected objects.
Thus, a user cannot get indirectly in B what he or
she cannot get directly in A. Active flow control
began in the early 1970s. Most flow controls
employ some concept of security class; the
transfer of information from a sender to receiver
is allowed only if the receiver’s security class is
at least as privileged as the sender’s. A flow
policy specifies the channels along which
information is allowed to move. The simplest
flow policy specifies just two classes of
information: confidential (C) and non-
confidential (N), and allows all flows except
those from class C to class N. This policy can
solve the confinement problem that arises when a
service program handles data such as customer
information, some of which may be confidential.
For example, an income-tax computing service
might be allowed to retain a customer’s address
and the bill for services rendered, but not the
customer’s income or deductions. Access
mechanisms are responsible for checking user’s
authorizations for resource access: only granted
operations are executed. Flow controls can be
enforced an extended access control mechanism,
which involves assigning a security class
generally called a clearance to each running
program.
The program is allowed to read a particular
memory segment only if its class is as low as that
of the segment. This automatically ensures that
no information transmitted by the person can
move from a higher to a lower class. For
example, a military program with a secret
clearance can only read from objects that are
unclassified and confidential and can only write
into objects that are secret or top secret. It covert
channels can be classified into timing and storage
channels. One way to think of the difference
between covert timing channels and covert
storage channels is that covert timing channels
are essentially memory less, whereas covert
storage channels are not.

With a timing channel, the information
transmitted from the sender must be sensed by

the receiver immediately, or it will be lost.
However, an error code indicating a full disk
which is exploited to create a storage channel
may stay constant for an indefinite amount of
time, so a receiving process is not as constrained
by time.

IV. DATA ENCRYPTION

In above section we describe the different
database encryption options showing how each
variant affects application performance,
manageability, and security. We will cover both
traditional encryption and the newer alternatives:
tokenization and Format Preserving Encryption.
We also review key management options the role
of access controls, and application-level
encryption. Finally we close with a real-world
example of how to select a database encryption
or tokenization solution to meet your
organization’s security objectives. We feel the
best way to accomplish these goals is to present a
simple guide for selecting a database encryption
strategy basically a decision tree for you to plug
in your requirements and map those to the
available database security choices. This process
will highlight the differences in approaches, and
tie business needs to technical capabilities.
Between this guide and the use cases, end users
will have the tools to both clarify their goals and
determine an appropriate implementation
strategy. The term database encryption is used to
describe many different methods of data
protection, implemented either outside or within
the database engine. Conceptually, a database is a
sophisticated box to put data in. Taking this
analogy one step further, you can protect the
entire box like File/OS etc, the entire contents of
the box such as Full database or some subset of
the content within the box such as Column,
Table, and Schema. We can apply encryption to
the contents through native database functions or
externally with third party tools, but both are
called database encryption. We also see growing
use of tokenization as an alternative or
complement to encryption, since it achieves
many of the same goals, for this discussion, we
divide database encryption into two basic types:

(i) Transparent/External Data Encryption
(TDE). These terms refer to encryption of the
entire database. This is provided by native
encryption functions within the database engine.
Some database vendors offer column and table
level granularity, but it is increasingly common
to apply encryption to all the data. We call this
‘transparent’ database encryption because it is
invisible to the applications and users that use the
data, and requires no changes to application
logic.

Farooqui and Furkan 110

Fig. 2. Column Level TDE.

The principal use case is to prevent exposure of
information due to loss of the physical media
such as disk, tape, etc. or compromise of the
database files in storage as shown in Fig. 2. The
transparent encryption can also be handled
through drive or OS/file system encryption,
applying encryption on everything that gets
written to disk.

Although these options may lack some of the
protections of native database encryption, both
are invisible to the application and do not require
alterations to the code or schemas. Transparent
encryption protects the database from users
without database credentials, but does not protect
data from authorized users as shown in Fig. 3.

Fig. 3. Transparent Encryption.

(ii). User/Data Encryption. These terms
describe encrypting specific columns, tables or
even data elements within the database. We call
this user encryption because the objects being

encrypted are owned and managed on a per-user
basis. Tokenization also falls into this category.
The classic use case for this encryption model is
encrypting credit card numbers within a database.

Farooqui and Furkan 111

The goal is to provide protection against
inadvertent disclosure, or to enforce separation of
duties on credentialed users of the database. The
downside is that these variants are not invisible
to the application and usually require code and
database changes. The concept is to encrypt only
the highly sensitive data we are worried about,
reducing the overall performance impact, and
minimizing code and database changes. How this
is accomplished depends on how key
management is handled, the use of internal vs.
external encryption services, and how
applications use the database. It should be
stressed that both user and transparent encryption
protect media, but the granularity provided by
user encryption comes at the cost of required
modifications to code and/or database schemas.
Some vendors offer transparent encryption
applied to specific tables or columns, but the
value proposition is still focused on lost media
and file protection, not separation of duties.
Tokenization or Format Preserving Encryption is
designed to reduce required external application
changes, but still require internal database
modifications. In some of our earlier essays and
articles, we described these two options as
Encryption for Media Protection and Encryption
for Separation of Duties. That was a bit of an
oversimplification, but those terms better
describe the value they provide vs. the
technology features that do the work. While we
wanted to use terminology that directly mapped
to the business use case, if you asked your
RDBMS vendor for “media encryption”, they
would be unlikely to know what the heck you
were talking about. The security of data is the
most important, Database security covers the
following issues.

(a) Privacy. Only authorized persons should be
allowed to access the database. In addition, only
the part of the database that is required for the
functions they perform should be available to
them. In other words, users are allowed to access
only the information that is pertinent to their
jobs.

(b) Database integrity. Database should be
protected from improper modifications, either
intentional or accidental, to maintain database
integrity. Only the type of operations that need to
be performed by the user should be allowed to
them. For example, an employee who does not
belong to accounts department should not be
allowed to modify the balance sheet of the
organization. The employees of accounts
department only should be allowed to do so.

(c) Database availability. Security should not
restrict the authorized users to perform their
actions on the part of the database available to
them.

For example, an accounts department employee
should not be restricted to update the balance
sheet.

V. CONCLUSION

The transparent/external encryption protects data
from compromise by attacks from outside the
database, but does not protect against
credentialed database users. User/data encryption
can encrypt data and restrict access based on
database users, but at a higher cost in terms of
complexity, performance and manageability. In
this paper the security issues and requirements
for discretionary and mandatory security models
for the protection of conventional database
systems and object oriented database systems are
illustrated. We have also discussed the issues
related to security in object-oriented databases.
Several proposals for discretionary and
mandatory security models for the protection of
conventional databases and object-oriented
database systems are presented. Still, there is not
a standard for designing these security models.
The work presented in this paper gives a
collected picture of different security issues of
database it can be extended to define, design and
implement an effective security policy on a
database security.

REFERENCES

[1]. E. Bertino and E. Ferrari, “Administration
Policies in a Multipolicy Authorization System,”
Proc. 10th Ann. IFIP Working Conf. Database
Security, Aug. 1997.
[2]. E. Bertino, S. Jajodia, and P. Samarati, “An
Extended Authorization Model,” IEEE Trans.
Knowledge and Data Eng., vol. 9, no. 1, pp. 85-
101, 1997.
[3]. Mansour Zand, Val Collins, Dale Caviness,
“A Survey of Current Object-Oriented
Databases,” ACM SIGMIS Database, Volume 26
Issue 1, February 1995.
[4]. Elisa Bertino, “Data Hiding and Security in
Object-Oriented Databases,” In proceedings
Eighth International Conference on Data
Engineering, 338-347, February 1992.
[5]. Martin S. Olivier, Sebastian H. Von Solms,
“A Taxonomy for Object-Oriented Secure
Databases,” ACM Transactions onDatabase
Systems, Vol. 19, No. 1, Pages 3-46, March
1994.
[6]. Fausto Rabitti, Elisa Bertino, Won Kim,
Darrell Woelk, ”A Model of Authorization for
Next-Generation Database Systems,” ACM
Transactions on Database Systems (TODS),
Volume 16 Issue March 1991.
[7]. Pierangela Samarati, Elisa Bertino,
Alessandro Ciampichetti, Sushil Jajodia,
“Information Flow Control in Object-Oriented
Systems,” IEEE Transactions on Knowledge and
Data Engineering, vol. 9, no.4, pp.524–538,
July-August 1997.

Farooqui and Furkan 112

[8]. Ahmad Baraani-Dastjerdi, Josef Pieprzyk,
Reihaneh Safavi-Naini, Security In Databases: A
Survey Study,” Department of Computer
Science, The University of Wollongong,
Wollongong, Australia, February 7, 1996.
[9]. Sushil Jajodia, Boris Kogan, “Integrating an
Object-Oriented DataModel with Multi-Level
Security,” Proceedings of the 1990 IEEE
Computer Society Symposium on Research in
Security and Privacy, 7-9, May 1990.
[10]. D. Elliott Bell, Leonard J. La Padula,
“Secure Computer System -Unified Exposition
and Multics Interpretation,” Report, No. MTR-
2997, MITRE, 1976.
[11]. E.B. Fernandez, R.C. Summers, and C.
Wood, “Database Security and Integrity,”
Addison-Wesley, February 1981.
[12]. Elisa Bertino, Ravi S. Sandhu, “Database
Security - Concepts, Approaches, and
Challenges,” IEEE Transactions on Dependable
and Secure Computing, Volume 2, Issue 1,
Page(s):2 –19, March2005.
[13]. James M. Slack, Elizabeth A. Unger, “A
Model of Integrity for Object-Oriented Database
Systems,” Proceedings of the
1992ACM/SIGAPP Symposium on Applied
computing: technological challenges of the
1990's, April 1992.
[14]. R. Fagin, “On an Authorization
Mechanism,” ACM Trans. Database Systems,
vol. 3, no.3, pp.310-319, 1978.
[15] A. Eisenberg and J. Melton, “SQL:1999,
Formerly Known as SQL3,” SIGMOD Record,
1999.
[16] Elisa Bertino, Pierangela Samarati, Sushil
Jajodia, “High Assurance Discretionary Access
Control for Object Bases, Proceedings of the 1st
ACM conference on Computer and
communications security, December 1993.
[17]. C. Wood and E.B. Fernandez,
“Decentralized Authorization in a Database
System,” Proc. Conf. Very Large Databases,
1979.
[18]. E. Bertino, P. Bonatti, and E. Ferrari,
“TRBAC: A Temporal Role- Based Access
Control,” ACM Trans. Information and System
Security, vol. 4, no. 3, pp. 191-233, 2001.
[19]. Elisa Bertino, C. Bettini, Pierangela
Samarati, “A Discretionary Access Control
Model with Temporal Authorizations,” in Proc.
of IEEE Int. Workshop on New Security
Paradigms, Little Compton, Rhode Island, 1994.

[20]. E. Bertino and L.M. Haas, “Views and
Security in Distributed Database Management
Systems,” Proc. Int’l Conf. Extending Database
Technology, Mar. 1988.
[21]. S. Rizvi, A. Mendelzon, S. Sudarshan, and
P. Roy, “Extending Query Rewriting Techniques
for Fine-Grained Access Control,” Proc. ACM
Sigmod Conf., June 2004.
[22]. Joel Richardson, Peter Schwarz, Luis-
Felipe Cabrera, “CACL: Efficient Fine-Grained
Protection for Objects,” ACM SIGPLAN Notices,
conference proceedings on Object-oriented
programming Systems, languages, and
applications, Volume 27 Issue 10, October 1992.
[23]. US Dept. of Defense, Trusted Computer
System Evaluation Criteria, DOD 5200. 28-STD,
Dept. of Defense, Washington, D.C., 1975.
[24]. Oracle, “The Virtual Private Database in
Oracle9iR2,” available
athttp://otn.oracle.com/deploy/security/Oracle9iR
2/pdf/VPD9ir2wp.pdf,2000.
[25]. HIPAA, “Health Insurance Portability and
Accountability Act of 1996,” available at
http://www.hep-calert.org/links/hippa.html,1996.
[26]. Ahmad Baraani-Dastjerdi, Josef Pieprzyk,
Reihaneh Safavi-Naini, A Security Model for
Multi-Level Object-Oriented Databases Based on
Views,” Tr-96-03, Department of Computer
Science, The University of Wollongong,
Wollongong, Australia, February 5,1996.
[27]. Dorothy E. Denning, T.F. Lunt, “A
Multilevel Relational Data Model,” in
Proceedings on Symposium on Computer
Security and Privacy, IEEE Computer Society
Press, pages 220-234, Oakland, CA., 1987
[28]. Peter J. Denning, “A Lattice Model of
secure Information Flow,” Comm. ACM, vol. 19,
no.5, pp.236-243,1976.
[29]. M.B. Thuraisingham, “Mandatory Security
in Object-Oriented Database Systems,” ACM
SIGPLAN Notices, Conference proceedings on
object-oriented programming systems, languages
and applications, Vol. 24 Issue 10, September
1989.
[30]. T.F. Keefe, “SODA: A Security Model for
Object Oriented Database Management
Systems,” Proceedings of the I5th International
Computer Software and Applications
Conference, Tokyo, Japan, September 1991.
[31]. Zaniolo C., “Object-Oriented Programming
Prolog,” Proceedings of the IEEE Logic
Programming Symposium,1984.

http://otn.oracle.com/deploy/security/Oracle9iR
http://www.hep-calert.org/links/hippa.html

